
CSE 451: Operating Systems
Spring 2020

Module -2
Learning to Walk

First of all
• Hi, I’m John

• This is my dining room

• The goal of the course this quarter is the same as every quarter
• Maximize useful learning/experiences per hour of your time spent

• We have unprecedented challenges

• We have unprecedented constraints
• Constraints are the mother of invention

• Some things will be as always
• lecture material (after this week)
• projects (xk)
• working in pairs
• grading
• exams (except we will have a midterm and will have a final)

Constraints

• First of all, absolutely no in person meetings
• staff / students
• staff / staff
• students / students

• Second, we’re not even allowed on campus unless we can demonstrate
some critical reason to be there

• So, all interactions are remote
• classes, sections, office hours, exams, working on projects

• We’re not sure how to do all that

Classes This Week
We’re required to spend the first week of classes figuring out how to
make this work

• We cannot assign work to be graded
• We cannot present material that will be relevant to work that will be graded
• We must “meet”

• Some preliminary plans
• Classes: Zoom
• Sections: Zoom
• Office Hours: Zoom (jz), ? (TAs)

Not A Course Intro (because that may not be allowed)

Not A Course Intro

• CSE 451 has two content streams
• lectures -- we’ll be roughly following the text
• sections / projects – not even roughly following the text

• We’ll be doing some of the traditional xk projects
• We won’t start until next week

• We’ll be working in teams of two

• We’ll be having online exams

Departmental Computing Resources

• The same as always
• except that you can’t go into the labs to use them

• New! Linux with remote desktop (rather than X forwarding):
https://vdi.cs.washington.edu/

• There is an optional exercise for this week...
• Not graded
• Hopefully interesting

https://vdi.cs.washington.edu/

Using Zoom

• Is this format (screen sharing with talking head) effective?

• Can you raise your hand?
• If you do, will I notice?

• Chat messages?
• Private / public

• Can I manage breakout rooms?
• Can you interact in them?

Performance
• The XX (the thing I’m not allowed to talk about until next week) has

many jobs
• For instance, x, y, z

• We require the XX to be correct
• No crashing

• We require the XX to be secure
• No undesired behaviors by anyone, including me

• We’d like the XX to be low overhead
• We’d like the XX to not interfere with good application performance

Static vs Dynamic Application Analysis

• “Static” means when the code isn’t running
• The compiler has a static view of the application’s code

• “Dynamic” means when it is running
• The XX, the runtime libraries, the app, and other apps (e.g., services) have a

dynamic view of the application
• (The CPU hardware has a dynamic view as well)

• Static can see all the code, and all possible paths in it
• Can reason about code behavior and possibly apply powerful optimizations

• Dynamic sees which paths are actually being used
• Can adapt to what the code is actually doing

Application (including XX) Performance

• What are the factors that influence the running time of an
application?

• 1) Algorithm/asymptotic running time
• The OS can’t rewrite your app to use a more efficient algorithm

• 2) Code path length
• Again, the OS can’t really do much about this for the apps it runs

• those apps can use an optimizing compiler
• The implementer of the XX can try to optimize code its paths

• Can involve a tradeoff in choosing abstractions for the OS to implement

Application (including XX) Performance (cont.)
• What are the factors that influence the running time of an application?

• 3) Hardware:
• CPU implementation

• Instruction processing rate
• For example, how many instructions can be executed at once?

• Memory hierarchy
• Sizes, organizations, and locations of caches

• I/O
• What can device do, what does OS need to do?
• Number of simultaneous operations?

• 4) Hardware/software interactions
• Multi-core hw with threaded app
• Program locality

Application (including XX) Performance (cont.)
• What are the factors that influence the running time of an

application?
• 5) XX/application interactions:

• Program packaging
• Processes vs. threads

• Inter-process communication vs. thread synchronization
• Single machine vs. distributed

• Use of XX functions
• Memory intensive?
• I/O intensive?
• Thread intensive?

How expensive/important are the following?

• This is a pretty arbitrarily chosen set...
• Loop control overhead
• Procedure call overhead

• Overhead as a function of number of arguments passed
• Memory locality

• Good temporal
• Good spatial
• Predictable stride
• Random

• Multi-threaded execution memory effects
• As a function of number of cores

How expensive/important are the following?

• This is a pretty arbitrarily chosen set... (cont.)
• System calls

• Overhead to enter/exit the XX
• open/close a file without app layer buffering
• open/close a file with app layer buffering
• create a new process (fork only) and wait for it to terminate
• create/join a new thread

Any guesses?

Function Time (nsec.)
Loop iteration ?

Null procedure call ?

8 argument procedure call ?

good locality / bad locality ratio ? / ?

null syscall ?

file open ?

process create ?

thread create ?

Measurement

• I’ve written some code that tries to measure some of these things
• Measurement is really hard!

• My code could have bugs
• It could be measuring something different than I thought (say because the

hardware acts differently than I thought)
• It could be measuring something different than I thought (because the

compiler produced much different code than I thought)
• Very counter-intuitive results could be right, they could be wrong
• I may be measuring the wrong things

• What are the interesting things to measure?

Optional Exercise for This Week

• Fetch my code and do one or more of the following
• Figure out how to build an application from it

• $ gcc *.c will get a build error. Figure out why and fix it.
• Run the tests and examine the results

• Are they more or less in line with what you expected?
• Try running on different (kinds of) computers. How much does the hardware platform

affect the relative results (what’s fast and what’s slow and by how much)?
• Try building with optimization on ($ gcc –O2 *.c...) and run them again

• What changes? Why?

• Think of something interesting to measure and add code to measure it

The Measurement Code

• It’s in gitlab:
$ git clone git@gitlab.cs.washington.edu:zahorjan/cse451-20wi-distributables.git

• Let’s have a brief look at the code
• Let’s run it on my office desktop

Another thing to try...

• Linux includes a utility, strace, that traces all system calls made by a
process

• Based on the ptrace system call facility

• You can use it to get an idea of:
• how frequently system calls are being made (by an individual process)
• which system calls are common (at least for that process)

strace Example
• $ time strace /usr/bin/google-chrome

• Manually killed when chrome appeared on the screen
• Elapsed time: 3.14 seconds
• 11,155 system calls / second

14646 recvmsg
3118 poll
2405 futex
2268 read
1445 openat
1421 stat
1382 sendto
1374 madvise
1151 close
1010 write
862 mmap
796 access

544 fstat
345 fstatfs
309 writev
298 readlink
244 munmap
197 fcntl
175 mprotect
161 fadvise64
111 getrandom
107 rt
101 sendmsg
90 getpid

41 dup
33 unlink
32 uname
32 getdents64
28 lseek
27 ftruncate
27 fallocate
26 clone
14 recvfrom
12 getuid
12 geteuid
11 getegid

11 wait4
10 getgid

9 socketpair
8 getpriority
7 pipe
7 socket
7 prlimit64
7 ioctl
6 eventfd2
6 dup2
5 connect
4 statfs

4 arch
4 getresuid
4 brk
4 symlink
4 getresgid
3 lstat
3 shmctl
3 shmat
3 shmget
3 getpeername
3 sysinfo
2 execve

2 shmdt
2 set
2 sched
2 inotify
2 mkdir
2 gettid
2 creat
2 getsockname
2 shutdown
2 setpriority
1 rename
1 listen

1 setsockopt
1 nanosleep
1 clock
1 exit
1 bind
1 rmdir
1 prctl
1 getppid
1 getpgrp

	CSE 451: Operating Systems�Spring 2020�
	First of all
	Constraints
	Classes This Week
	Not A Course Intro (because that may not be allowed)
	Not A Course Intro
	Departmental Computing Resources
	Using Zoom
	Performance
	Static vs Dynamic Application Analysis
	Application (including XX) Performance
	Application (including XX) Performance (cont.)
	Application (including XX) Performance (cont.)
	How expensive/important are the following?
	How expensive/important are the following?
	Any guesses?
	Measurement
	Optional Exercise for This Week
	The Measurement Code
	Another thing to try...
	strace Example

